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Abstract—In this paper, we explore the information dissemination prob-
lem in ad-hoc wireless networks. First, we analyze the probability of suc-
cessful broadcast, assuming: the nodes are uniformly distributed, the avail-
able area has a lower bound relative to the total number of nodes, and there
is zero knowledge of the overall topology of the network. By showing that
the probability of such events is small, we are motivated to extract good
graph topologies to minimize the overall transmissions. Three algorithms
are used to generate topologies of the network with guaranteed connectivity.
These are the minimum radius graph, the relative neighborhood graph and
the minimum spanning tree. Our simulation shows that the relative neigh-
borhood graph has certain good graph properties, which makes it suitable
for efficient information dissemination.

1. INTRODUCTION

The concept of collectively utilizing distributed sensor mod-
ules in a hierarchical manner was first introduced as cooperative
sensor networking [1]. An extension of this idea is to prolong
the life-time of finite energy sources by leveraging cooperative
modulation techniques [2]. This technique relies heavily on the
efficient usage of battery power on the local communication link
and requires some sharing of information, which motivates our
investigation into the information dissemination problem.

The connectivity among nodes directly influences the effi-
ciency of information dissemination within a network. Conven-
tionally, the topology of an ad-hoc network is defined by the
transmission radius d of each node. Due to the dynamic and
ad-hoc nature of such networks, using a fixed d might not ren-
der a connected network at all times. Sometimes, the network is
partitioned into several connected components where each com-
ponent is a connected sub-network, but there are no connections
between the different sub-networks; we call this a partitioned
network.

In [3], Gupta and Kumar showed that, given m nodes such

that each node covers a RF circular area 7d%, = %7%—6(—7.‘),

then the network approaches connectivity with probability 1 as
¢(n), the connectivity measure in [3] approaches infinity, syn-
onymous to the number of nodes approaching infinity. We ex-
amine the alternate extreme of relatively sparsely spaced nodes
and the probability of distributing a piece of information in a
multi-hop manner from a node to all other nodes in the network,
with a fixed number of transmissions.

In this paper, we examine information sharing (as gossip) for
the objective of leveraging cooperative modulation techniques
that requires each node to communicate its information to all
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other nodes. Formally, the gossip problem is defined in [4] as
the all-to-all communication problem, where each node holds
a piece of imndependent (or disjoint) information. The set con-
taining the union of information from all nodes is called the
cumulative information of G. The gossip problem is to find a
communication strategy such that each node from the set of all
nodes, V acquires the whole cumulative information.

In the cooperative sensor network model, aggregation and
multiplexing might not result in energy-per-bit gains. Thus,
the gossip problem can be considered as n separate broadcasts,
where 7 is the number of nodes. We analyze the probability
of successful broadcasting from a source node, using a fixed
number of transmissions. We assume the nodes to be randomly
placed, and there is no knowledge of the topology of the net-
work. As expected, for large areas (i.e. areas where the dense-
ness of the nodes is not a considerable factor), the probability
of successful broadcast is low, motivating our investigation into
specific network graph topologies guaranteeing connectivity for
information dissemination. We propose three classes of graphs
and examine their graph properties to determine their suitability
for broadcasts in a gossip manner.

II. PROBABILITY ANALYSIS OF BLIND BROADCAST

We now characterize the total number of transmissions re-
quired for blind broadcast, which is topology independent and
without any knowledge of the topology. The node originating
the broadcast is the source node. We now formally define con-
nectivity.

Let I;,1; € R? be the locations of nodes v; and v; respec-
tively, where v; % v;. Direct connectivity between any pair of
nodes v; and v; is defined by the transmission radius d. Specif-
ically, for v; and v;, we have || [; — I; || < d, where the norm
used is the Buclidean norm (i.e., L2-norm). We say that v;
and v; have multi-hop connectivity if there is a non-empty set
of nodes P with size |P|, where the nodes of P are labeled
a(l),a(2),...,a(|P|), and we have || I; — I,y | < d; for
2 <k <|P| -1, wehave || lox) = lars1y | < d; and fi-
nally || Lyqpy — 4 || £ 4.

We say that a set of nodes are connected if each pair of nodes
is either directly or multi-hop connected. Otherwise, the set of
nodes is partitioned.

Let Iyre, l1, 0o, ..., ln—1 € R? be the locations of the source
node and nodes vy, vy, ..., Un—1 respectively, and let V' con-
tain all the nodes. Let N'(l;) be the maximal set of nodes con-
tained in the area of radius d centered at [;. Specifically, we have
NG)=Hv, v, € Vand I, - 1| <d}.
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Assume each node has a transmission radius of d, the area
covered by a node v; is wd® centered at [;. We use A(v;) to
denote the radial area covered by v;. Suppose nodes z and y are
directly comnected. Ignoring edge effects, the maximum area
where a third node z can reside such that z is directly connected
to i but not to z, is upper bounded by A(y) — [Alz) N Aly)].
Let o = 27 + 3V/3.

Lemma [: Suppose there exists nodes w,,v; at location
l;,1; € R* respectively, such that [|I;—{;]| = d. Ifeach node can

cover an area with radius d, the non-overlapping area of either
node v; or v; is "‘—g: v

Proof of Lemma 1 : Consider Figure 1, where two nodes are
separated by distance d, and RF radial transmission distance of

nodes v; and v; are d; and d; respectively, where d; = d; = d.

Fig. 1. Non-overlapping area with respect to Node v;.

Each node covers area wd”. Since /; (Node v;) and I; (Node
v;) are exactly d apart, then there exists a perpendicular line
between [; and /; such that it bisects the line joining [; and ;.
Thus, we can compute € in Figure 1 as § = cos“l(d—ég) =
cos*(1/2) = /3. Since the angle representing the overlap is
twice the angle 0, the area encompassed by the arc of the two
points is 26 = 4’%2—,

Subtracting the triangular area encompassed by the arc, we

wd? wd? 2 4 — d?
have A = 2 — 2. 1(V35)(§) = o — AL - (ngBid

Since the overlap occurs on both sides of the perpendicu-

lar line bisecting the line joining [; and [;, we have 2A =
2

ﬁ#g)—d—w To obtain the amount of area A,,,(d) that is not

overlapping, we have

Anon{d)

7d® — 2A

e (4 — 3/3)d?
6

(27 +3V/3)d*

—

I

O

For a number of randomly placed nodes each having a trans-
mission radius d, we can write a topology connectivity proba-
bility in terms of the exact number of transmissions required to
propagate a bit of information to all other nodes.

Let T, be the number of transmissions required to broadcast
error free in a multi-hop manner from the source node. Assume
that all the nodes n reside in an area 4, such that

87 + a(n —2)

- 6
Theorem 2: Consider n nodes with broadcast radius d ran-
domly placed over area A4,, with uniform distribution. The upper

Ay d* . &y
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bound on the probability of a node requiring 7' = & transmis-
sions to propagate a bit of information to all other n — 1 nodes
is upper bounded by G (k, n)(d?/A, )™, where

G (2m + 33V Hdr — 3/3 + k| 1k
et

Using (1), we have

6ot Ar — 33 + k)P
(67 + a(n ~ 2))r=1

Pr{Tss(n) =k} <

Proof of Theorem 2:
Let [(src) be the location of the source node. Let I; be the lo-
cation of v;, where 1 < 4 < n — 1. For the broadcast of a bit

‘from the source requiring a single transmission to another node

v;, the receiving node must be within radius distance d of the
source node, and so the probability of a single transmission to a
single node, Pr{Ts,.(1) = 1}, we have

Pr{l; € Allsre)}

rd®
= Z; = Pfirst -

Pr{Toe(l) =1} =
@)

The probability of a single transmission from the source node
to all other n — 1 nodes is p?;it. For nodes to require multi-
ple transmissions, the spatial allowable area not in contact with
any other nodes, and thus requiring more transmissions, is vpper
bounded by the non-overlapping area between two nodes w.rt.
one of the nodes. Thus, the probability of broadcasting a bit
over any transmission other than the first transmission, pirans
can be written as the probability of the source node propagating

arich that 2y, 1o 5 1
such that u; is at a distance

s SN, ol it Framgrmit o ki ay .
through v; to transmit a bit to Vj

larger than d. The number of transmissions is lower bounded by
the number of hops. Thus, using Lemuma 1, we have

Pr{l; € N(i(sre)) ()15 € N )/l ¢ N(U(src))}

DPtrans .<.
(27 +3V3)d?
B 64,
ad?
R ®

For a total of n nodes where the source node needs to propagate
over ¢ transmissions to all of the other n — 1 nodes, there are
n — 1 — ¢ nodes that are allowed to placed anywhere within
the allowable area of transmission. Thus, the probability of the

1 — 1 — i nodes residing within the transmission area has an
upper bound of
. 1 [ 6nd? + (27 + 3/3)d2 (i — 1)
Dothers (Z) = =
An 6

_ [4m + 2mi + 3V/3i — 3/3]d?

- 64,

_ [4m = 3V3 + aild? @

B 64, ’

Using (2), (3), and (4), we can upper bound the legitimate area
required in order to transmit Ts.-(n) = k as the probability of
at least one node contained in the initial space, at least one node



contained in each of the non-overlapping spaces (equivalent to
the k—1 transmissions), and all other nodes contained anywhere
among the allowable space. Thus, we have

PT{Tsrc(n) = k} < Prirst 'pfr;}w 'pothmﬂs(kyl_l‘}g
rd? [ od?\*
-7 (5x)

<47r—3f+a/c} >

n—1-—k

42(n—1)

Gk n) ©

Combining (5) and (1), we obtain

6ok~ [dr — 34/3 + ak|r 1R
6”"1,4,,"{“1
6t dr — 3v/3 + ak]n ik g2n-1)gn-1

PriTh(n) = k) <

6 (67 + ao(n — 2))d?>-1
_ 6k~ dr — 3v/3 + a1k
(6 + a(n — 2))7-1

3

proving Theorem 2.
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e 10 12 14 g 12 20
% transmizsions

Fig. 2. Probability of number of transmissions for n independent uniformly
spaced nodes.

As the above analysis of Theorem 2 and plot of Figure 2
shows, the upper bound probability of successful information
dissemination with a fixed number of transmissions is small
given a lower bound constraint on the allowable area of uni-
formly placing nodes. This result justifies providing some form
of connectivity topology mapping prior to information dissenii-
nation.

1. COMPARING COMMUNICATION TOPOLOGIES

As an initial study, we propose three classes of topologies
and compare the graph properties of these by simulation. These
graphs are: (1) minimum radius, (2) relative neighborhood
graph and (3) minimum spanning tree. We will discuss each
class of graphs in more detail in forthcoming subsections. The
graph properties we are interested in are:

« radius: proportional to power over data rate.
+ hop diameter: the number of hops (network diameter) can be
used as a lower bound for the number of transmissions.
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« edge density: fewer edges simplifies the global scheduling.

« node degree: affects the number of time slots (or frequencies)
needed in local scheduling, i.e., non-interfering nodes can use
the same time slots (frequency) for local communication,

« number of biconnected components: this shows the number
of weak points within the network.

« size of largest biconnected component: used to measure the
network robustness.

In our simulation, we use sequential algorithms (single pro-
cessor) to compute the graphs and then compare the graph prop-
erties of the produced topologies. For a real application, these
algorithms must be redesigned to be distributed* over the nodes.

A. Minimum Radius (minR)

Given a set of randomly placed nodes and assuming that each
node must use the same transmission radius, we find the small-
est radius d which guarantees network connectivity. Let s de-
note the side of a square where s2 = A is the area where the
nodes are randomly placed. The algorithm iteratively performs
a binary search for the smallest d. In each iteration, the algo-
rithm computes a graph with transmission radius d and checks
if the graph is connected. If the graph is connected, then d is
decreased, otherwise, d is increased. The algorithm proceeds
in iterations until we find the smallest d such that, using d, the
communication graph is connected but when using d — 1, the
communication graph is partitioned. The sequential computa-
tional cost of this is O(n? log s).

B. Relative Neighborhood Graph

The relative neighborhood graph (RNG) of a node set V' in
Euclidean space is the graph G = (V, E), where (v;,v;) € E
if and only if there is no node v, € V such that || I; — [, || <
WG =1 land || §; =1 || < || Iy = {; ||, or equivalently, the
edge between nodes v; and v; is valid if there does not exists
any node closer to both v; and v;. Referring back to Figure 1,
aradius of || I; — I; || is used for the pair of nodes v; and v;.
Note that, in RNG, a different radius may be used for each pair
of nodes, and so for Figure 1, we could have d; # d;. If the in-
tersection of A(v;) and A(v;) does not contain any other nodes,
then Node v; and Node vy are relative neighbors (i.e. they are
directly connected). The RNG is a super-graph of the minimum
spanning tree, and it is a sub-graph of the Delaunay triangula-
tion. Supowit[5] presented a sequential algorithm which takes
O(n log n) operations to compute RNG.

C. Minimum Spanning Tree

Since the minimum spanning tree (MST) is a subgraph of
RNG, we use RNG in the computation of MST. Note that RNG
1s a subgraph of the Delaunay triangulation, and the Delaunay
triangulation is a planar graph. Thus, the number of edges in
RNG is bounded by 3n — 6. We then only need to examine
O(n) edges for inclusion/exclusion in the MST. The algorithm
first sorts the edges with respect to the edge length, from short-
est to longest. This takes O(n log n) operations. An edge is
included in MST if it does not create a cycle in the graph. This

*Since our main Interest here is in the graph topologies, we do not consider
the distributed computational complexity at this early stage.



is performed by using disjoint sets. Nodes that are connected
are placed in the same set. If the tested edge connects two nodes
belonging to different sets, then the edge is added to MST and
the two sets are unioned. If the tested edge connects two nodes
belonging to the same set, then this edge creates a cycle and it
is rejected. The number of operations for computing MST is
bounded by O(n), given the RNG is pre-computed.

D. Simulation Results

For our simulation’ runs, we generated n nodes, randomly
placed in an area 4, where 5 < n < 800, and A is a fixed
area of 6002 units?, and diagonal 600+/2 units. Two uniformly
distributed random integers are generated as the coordinate of
each node. For each n, we make 1000 runs. In each run, we use
the same set of nodes for the computation of the minimum radius
graph (minR), the relative neighborhood graph (RNG) and the
minimum spanning tree (MST).

From the simulation, we observe the following:

« radius: In minR, every node is required to use the same ra-
dius d; thus, d is the smallest radius which renders a connected
graph. For RNG and MST, the radius is the longest edge (in Eu-
clidean distance) in the graphs, assuming different transmission
radil were possible. Figure 3 shows the plot of the average max-
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Fig. 3. Maximum transmission radius, averaged over 1000 runs.

imum radius with respect to the number of nodes, normalized
with respect to the diameter of A which is 600v/2. As expected,
the radius decreases as the number of nodes increases for all
three graphs. On the average, MST requires a smaller radius
than RNG, where RNG requires a smaller radius than minR.
Note that as n increases, the performance of RNG is closer to
MST than it is to minR.

o hop diameter: the hop diameter of a network is the maxi-
mum number of hops among the shortest paths connecting any
pair of nodes. This can be used as a lower bound for the num-
ber of transmissions required for broadcast. Therefore, it is im-
portant to obtain a topology which minimizes the hop diameter.
Note that, a partitioned network has hop diameter +co. Figure 4
shows the plot of hop diameters with respect to the number of
nodes. On the average, minR has the lowest hop diameter and
MST has the highest. It is worth noting that the RNG hop di-
ameter is closer to the minR than it is to the MST, which means
RNG is almost as good as minR in this respect.

TWe have implemented the sequential algorithms in JAVA (version 1.2) on a
Sun Ultra-10 workstation.
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Fig. 4. hop diameter, averaged over 1000 runs.

o edge density: the edge density of a graph is computed rel-
ative to the maximum number of all possible edges. A graph
with n nodes can have at most 1’(—”2:9 edges. Let this number
be maxkE. The density of a graph G = (V, E) is defined to be
|E|/mazE, where density is a real number between 0 and 1.
We can then compare the densities of MST, RNG and minR.
From Figure 3, we observe that the edge densities of both MST
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Fig. 5. edge density, normalized and averaged over 1000 runs.
and RNG are very low. As a matter of fact, the plots of MST

and RNG almost coincide with each other. In Figure 5, minR
has a higher edge density, however, it also decreases very fast as

- the number of node increases. This is to be expected because as

7 increases, the number of all possible edges increases quadrat-
ically. On the other hand, as n increases, the radius in minR
decreases (Figure 3), resulting in fewer edges. Thus, the edge
density decreases. A lower edge density may lead to a shorter
transmission schedule.

« node degree: the node degree is the number of neighbors
having direct communication with the node. This affects the
scheduling of transmissions. A higher node degree mmplies that
a longer schedule is needed. For each graph, we find the node
with the highest node degree, defined as the maximum degree of
the graph. In Figure 6, RNG and MST have low node degrees
compared to minR. Asn increases, the maximum node degree in
MST and RNG approaches a small constant. On the other hand,
the maximum node degree of minR appears to increase linearly
with respect to n. This makes RNG and MST more scalable
when local scheduling is used.

« number of biconnected components: the number of bicon-
nected components reveals the number of weak points within
the network topology. Since biconnected components are con-
nected by articulation points whose failure results in a parti-
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Fig. 6. maximum node degree, averaged over 1000 runs.

tioned network, fewer biconnected components implies a more
fault-tolerant network. Since MST is a tree, it does not contain

Number of Biconnected Components
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Fig. 7. number of biconnected components, averaged over 1000 runs.

biconnected components (unless we consider each node to be
biconnected with itseif). Figure 7 shows that minR has fewer bi-
connected components than RNG. To clarify, in the sparse sub-
graphs of RNG, each sub-graph may have a tree topology. In
that case, each node is counted as a single biconnected compo-
nent. This may explain why the number of biconnected compo-
nents in RNG seems to be much higher, compared to minR.

« largest biconnected component size: by examining the
largest biconnected component, we can determine what percent-
age of the nodes are not biconnected with the majority of nodes.
Ifthe largest biconnected component contains 90% of the nodes,
then even if the mumber of biconnected components is high,
we are guatanteed that 90% of the network is fault-tolerant.
Figure 8 shows that for most n values, the largest biconnected
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Fig. 8. fraction of nodes in largest biconnected component, normalized and
averaged over 1000 runs.

component in minR contains over 90% of the nodes. The per-
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formance of RNG is not far behind with 86% at n = 100 and

over 90% for n > 200.

IV. CONCLUSION

The desire to efficiently reduce the overall energy-per-bit of
a node and the analysis indicating the low probability of a bit
of information successfully being disseminated among the other
nodes with zero knowledge of network topology motivated our
study into the graph connectivity for reducing overall transmis-
sions.

From the simulation results, we motivate minR, RNG and
MST as follows. To guarantee connectivity, we need a span-
ning tree at the least. MST is a good choice because it strives to
minimize power for fixed data rate. The MST is good in terms
of the average maximum transmission radius, edge density and
maximum node degree. However, the MST is not fault-tolerant
because any node or edge failure will partition the network. It
then makes sense to look at a super-graph of MST which still
has some of the good graph properties of the MST. For this, we
proposed the RNG. The RNG also is good in terms of trans-
mission radius, edge density, and maximum node degree. In
addition, our simulation shows that for n > 100 (or the node
density > Z = 20 = L) the largest biconnected com-
ponent of RNG contains at least 86% of the nodes. Although
this is not as good as minR, it is close. The RNG may have
a higher number of biconnected components. However, since
RNG’s largest biconnected component contains the majority of
nodes, this offsets the importance of the number of biconnected
components. Concerning hop diameter, RNG is better than MST
and worse than minR. However, RNG’s hop diameter is closer
to minR than it is to MST. The minR is good in terms of the
hop diameter, the number of biconnected components and the
average largest biconnected component size. However, minR’s
disadvantages are the higher transmission radius, higher edge
density and a node degree which increases linearly with respect
to the number of nodes. In light of the above, we suggest that
RNG can be a good candidate to consider as a target topology for
communication. From the simulation, RNG shows good graph
properties when compared with minR and MST.

For future work, we propose to investigate other topologies
related to RNG, RNG’s implications on amplifiers, and how to
compute RNG distributively in an ad-hoc network.
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